

GFR Estimation in AKI

Dr. Shahrzad Shahidi **Professor of Nephrology** Isfahan University of Medical Sciences

١١ تا ٢٥ مهر ١٤٠١

دانشگاه علوم پزشکی و خدمات بهداشتی درمانی زنجان مركز همايشهاي بينالمللي روزبه

Objects

- Introduction
- Implications of GFR for Critical Care
- KeGFR
- Shortened CrCl
- Diagnosing AKI ahead of time
- Medication management in critically ill patients with AKI

Nephrol Dial Transplant (2020) 35: 1834–1836 doi: 10.1093/ndt/gfaa086 Advance Access publication 10 July 2020

IF: 6.1 (2022)

Estimating glomerular filtration rate in patients with acute kidney injury

Yosu Luque^{1,2} and Eric Rondeau^{1,2}

¹Intensive Care Nephrology and Renal Transplantation Unit, Tenon Hospital, APHP, Paris, France and ²Sorbonne University, Paris, France

Correspondence to: Eric Rondeau; E-mail: eric.rondeau@aphp.fr

The 2012 Kidney Disease: Improving Global Outcomes consensus definition of acute kidney injury (AKI) has been very useful to classify patients and to compare the different studies of AKI [1]. However, this definition is based on urine output and serum creatinine levels that are suboptimal markers of renal function. It is known that serum creatinine depends not only on renal function, but also on muscular body mass, protein intake, hydration and medication. The other parameter creatinine production rate [6]. Recent studies have shown that the KeGFR equation has better predictive performances for severe AKI and renal replacement therapy initiation than the MDRD equation and that it could also be predictive for AKI recovery [7, 8]. It has also been suggested that it could be helpful in drug dosage adaptation [9]. However, this is the first study comparing these formulae to direct GFR measurement in AKI.

The authors used the KeGFR and Jelliffe equationd to esti-

Introduction

- The 2012 KDIGO consensus definition of AKI has been very useful to classify patients & to compare the different studies of AKI.
- This definition is based on urine output & serum Cr levels that are suboptimal markers of renal function.
- Serum Cr depends not only on renal function, but also on muscular body mass, pr intake, hydration & medication,...
- The other parameter is urine flow, which lacks sensitivity & specificity.

Luque Y. NDT. 2020

Introduction

- The **gold standard** of GFR assessment is direct measurement, wherein exogenous markers are administered (e.g., iohexol) & their clearance precisely quantified.
- ➤ However, the technical complexity, turnaround time, & cost make routine GFR measurement impractical.
- ➤ Alternatively, timed urine collections can be used for measurement of Cr clearance. The accuracy of such measurements is inconsistent.
- For these reasons, **GFR estimation equations** are widely used to guide treatment decisions in critically ill patients, despite well described limitations.

Critical Care Medicine

Articles & Issues >

Latest Articles

Collections 🗸

Podcasts

For Authors 💙

Journal Info 💙

Become a Membe

IF: 8.8 (2023)

Juttille

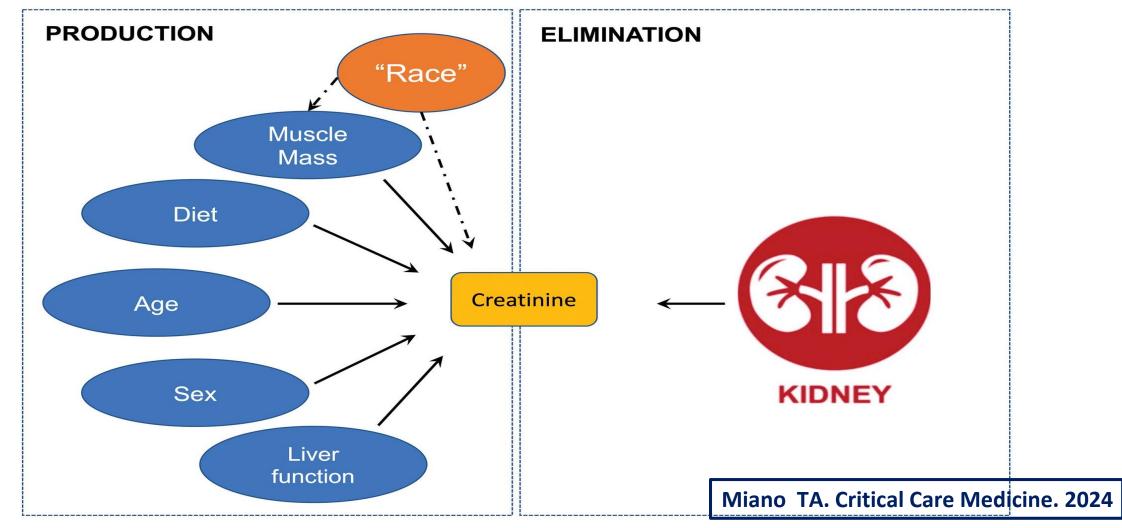
Images

Download

Cite

Toward Equitable Kidney Function Estimation in Critical Care Practice: Guidance From the Society of Critical Care Medicine's Diversity, Equity, and Inclusion in Renal Clinical Practice Task Force

Miano, Todd A. PharmD, PhD, FCCM¹; Barreto, Erin F. PharmD, MSc, FCCM²; McNett, Molly PhD, RN, CNRN, FNCS, FAAN³; Martin, Niels MD, FACS, FCCM⁴; Sakhuja, Ankit MD, MBBS, FACP, FASN⁵; Andrews, Adair RN, MATD⁶; Basu, Rajit K. MD, MS, FCCM⁷; Ablordeppey, Envo Ama MD, MPH, FACEP, FCCM⁸


Author Information⊗

Critical Care Medicine 52(6):p 951-962, June 2024. | DOI: 10.1097/CCM.000000000006237

Nonrenal determinants of Cr & the role of race

Implications of GFR for Critical Care

- 1. GFR assessment is essential for drug dosing, as nearly 2/3 of medications used in hospitalized patients are renally eliminated.
- 2. Evaluation of the risk vs. benefit of treatment with nephrotoxins requires accurate GFR assessment. This latter role is especially important, given that **one in four** drugs used in hospitalized patients is potentially nephrotoxic.
- 3. Eligibility for organ transplantation & consideration for mechanical circulatory support.

Miano TA. Critical Care Medicine. 2024

IMPLICATIONS of GFR for CRITICAL CARE

- 1. GFR assessment is essential for drug dosing, as nearly 2/3 of medications used in hospitalized patients are renally eliminated.
- 2. Evaluation of the risk vs. benefit of treatment with nephrotoxins requires accurate GFR assessment. This latter role is especially important, given that one in four drugs used in hospitalized patients is potentially nephrotoxic.
- 3. Eligibility for organ transplantation & consideration for mechanical circulatory support.
- 4. Last, GFR assessment is important for the conduct of clinical trials, where baseline kidney function is frequently a criterion for enrollment. In trials of AKI therapeutics, GFR assessment plays a role in AKI phenotyping & the evaluation of renal recovery as a trial outcome

Miano TA. Critical Care Medicine. 2024

Tools

Functional biomarkers

Cystatin C Pro-enkephalin Serum creatinine

Tissue injury biomarkers

NGAL

IL-18

KIM-1

L-FABP

NAG

 α -/ π -GST

Cycle-cell arrest markers

TIMP-2 × IGFBP-7 (Nephrocheck®)

GFR measurement or estimation?

AKI Phenotyping

Aims

- Risk stratification
- Prognosis
- Tissue injury
- Renal function
- Adapt drug dosage
- Early management

Luque Y. NDT. 2020

IF: 13.6

Articles 🗸 Subject Collections Authors & Reviewers ➤ Trainees ➤ Podcasts

Iournal Info ∨ More ∨

Outline

Images

Download

UP FRONT MATTERS

Retooling the Creatinine Clearance Equation to Estimate Kinetic GFR when the Plasma Creatinine Is Changing Acutely

Chen, Sheldon

Author Information⊗

Journal of the American Society of Nephrology 24(6):p 877-888, June 2013. | DOI: 10.1681/ASN.2012070653

- ➤ Although KeGFR equations have previously been devised, they have not been widely practiced or taught.
- ➤ This is unfortunate because we need to continue the favorable trend of interpreting kidney function not in terms of plasma Cr but of clearance.
- In this regard, the clinical evaluation of CKD is more advanced, but the assessment of AKI & renal recovery can begin to catch up with the promulgation of Cr kinetic formulae.

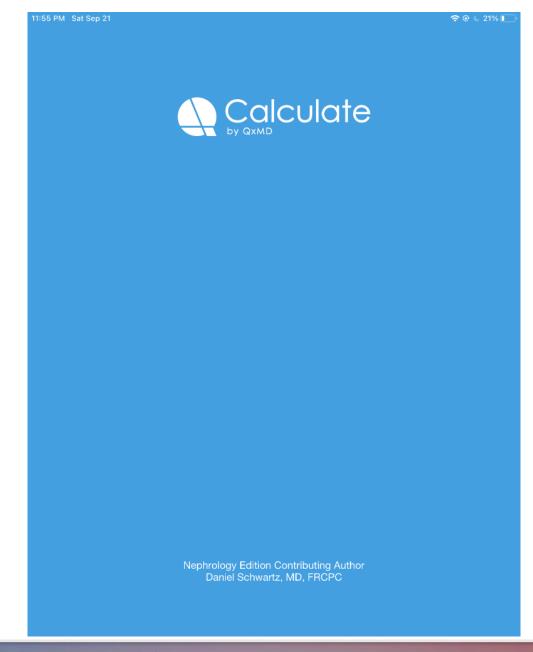
- > The earliest attempt at this was by:
 - > Jelliffe and Jelliffe in 1972
 - Chiou and Hsu in 1975
 - Moran and Myers in 1985
 - > Yashiro et al. in 2012
- Each may differ in their mathematical approach, algebraic or calculus based, but they are all essentially rooted in first principles of Cr mass balance.

Chen Sh. JASN. 2013

➤ To try to overcome the barriers to adoption, Dr. Chen has reformulated the core mathematical operations into a less intimidating & more pliable version at the bedside.

Chen Sh. JASN. 2013

$$KeGFR = \frac{SSP_{Cr} \times CrCl}{MeanP_{Cr}}$$


$$\times \left(1 - \frac{24 \times \Delta P_{Cr}}{\Delta Time(h) \times Max \Delta P_{Cr}/Day}\right)$$

- SSP_{Cr}= Steady State Plasma Cr
- ΔPCr= PCr (end) PCr (start)

Chen Sh. JASN. 2013

(0)

CRRT Dosing Calculator

Contrast Nephropathy Post-PCI

Calculate desired dose of dialysate in CRRT

Estimate risk of dialysis after cardiac surgery.

Dialysis Risk After Cardiac Surgery (Mehta)

Identify a pre-renal state in patients using diuretics

Estimate risk of AKI after percutaneous coronary intervention

Estimate the risk of dialysis after cardiac surgery (Mehta model)

Elevated serum creatinine or hyperkalemia after ACEi/ARB

Dialysis Risk After Cardiac Surgery (Cleveland Clinic Score by Thakar)

By Specialty

General Calculators

COVID-19

Nephrology

Acute Kidney Injury

Nephrolithiasis

Pathology

Chronic Kidney Disease

PD

Hemodialysis

eGFR

Fluids & Electrolytes

Transplant

Glomerulonephritis

Hypertension

AKI Clinical Trials

eGFR using CKD-EPI (Creatinine-Cystatin C) Equation (2021)

Calculate eGFR using the CKD-EPI (Creatinine-Cystatin C) Equation (2021)

Free Water Deficit

the Iranian

می نفر ولو

Estimate risk of elevated serum creatinine or hyperkalemia after ACEi or ARB initiation Fractional Excretion of Sodium Differentiate pre-renal AKI from ATN Fractional Excretion of Urea

KDIGO AKI Staging Classification in acute kidney injury (AKI)

Kinetic eGFR (KeGFR) ine is changing acutely (either rising or falling)

Grouped

Mayo AKI Risk after Primary Total Hip Arthroplasty

KDIGO Clinical Practice Guideline for Acute Kidney Injury

McMahon Rhabdomyolysis Risk Score

Predict the risk of severe acute kidney injury or mortality in patients with rhabdomyolysis

Estimate perioperative risk of acute kidney injury

NCDR AKI and Dialysis Risk after PCI

Recents

Favorites

11:47 PM Sat Sep 21			11:49 PM Sat Sep 21		11:48 PM Sat Sep 21				
< Back		Kinetic eGFR (KeGFR)	≺ Back		< Back		Kinetic eGFR (KeGFR)	Hide Results	$\stackrel{\wedge}{\boxtimes}$
Questions		Question	Questions		Questions				
Steady State Plasma Creatinine?	Unanswered >	Answer Ent More Information Baseline creatinine	Steady State Plasma Creatinine?	1 mg/dL >	Steady State Plasma Creatinine?	1 mg/dL >			
Creatinine Clearance or eGFR at baseline?	Unanswered >		Creatinine Clearance or eGFR at baseline?	76 ml/min >	Creatinine Clearance or eGFR at baseline?	76 ml/min >			
Creatine at 1st Time Point?	Unanswered >		Creatine at 1st Time Point?	2 mg/dL >	Creatine at 1st Time Point?	2 mg/dL >			
Creatinine at 2nd Time Point?	Unanswered >		Creatinine at 2nd Time Point?	3.2 mg/di 3	Creatinine at 2nd Time Point?	3.2 mg/dL >			
Time Interval Between Two Creatinine Values?	Unanswered >		Time Interval Between Two Creatinine Values?	Time Interval Between Two Creatinine Values?	48 Hours >	Results Kinetic eGFR			
						5.8 ml/n		7.5 ml/min	

Nephrol Dial Transplant (2020) 35: 1886–1893 doi: 10.1093/ndt/gfz178 Advance Access publication 16 September 2019

Estimating glomerular filtration rate in patients with acute kidney injury: a prospective multicenter study of diagnostic accuracy

Karyne Pelletier¹, Jean-Philippe Lafrance², Louise Roy³, Mathieu Charest⁴, Marie-Claire Bélanger⁵, Jean-François Cailhier³, Martin Albert¹, Anatolie Duca¹, Naoual Elftouh² and Josée Bouchard¹

¹Department of Medicine, Hôpital du Sacré-Coeur de Montréal, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada,
²Department of Medicine, Hôpital Maisonneuve-Rosemont, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada,
³Department of Medicine, Centre Hospitalier de l'Université de Montréal, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada,
⁴Department of Nuclear Medicine, Hôpital du Sacré-Coeur de Montréal, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada and
⁵Department of Biochemistry, Centre Hospitalier de l'Université de Montréal, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada

Methods

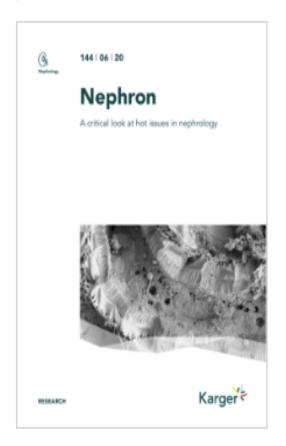
- The authors used the **KeGFR & Jelliffe** equations to estimate GFR in 119 adult AKI patients, mostly from the ICU (63%).
- It is the first to evaluate these equations compared with a validated GFR measurement in the AKI setting.
- They included a majority of moderate AKI patients (71% of Stage 1 AKI), & oliguric patients were excluded.
- GFR radioisotopic measurement was performed 24 h after inclusion in the majority of cases with a single 99mTcDTPA intravenous bolus.

Pelletier K. NDT. 2020

Conclusion

- The Jelliffe & KeGFR equations had **good correlations** with mGFR; however, they had wide limits of agreement.
- Both equations performed better in patients with severe
 CKD, & KeGFR performed better in older patients.

Pelletier K. NDT. 2020



IF: 2.5 (2024)

Volume 144, Issue 6

June 2020

RESEARCH ARTICLES | MAY 05 2020

Using Kinetic eGFR for Drug Dosing in AKI: Concordance between Kinetic eGFR, Cockroft-Gault Estimated Creatinine Clearance, and MDRD eGFR for Drug Dosing Categories in a Pilot Study Cohort

Subject Area: 🖟 Nephrology

<u>Manohar Bairy</u> 🕮 👴

Nephron (2020) 144 (6): 299-303.

Agreement

Concordance of Kinetic eGFR for drug dosing in AKI vs. Cockcroft-Gault & MDRD

Nephron

Cohort

Pilot study AKI and Kinetic estimated GFR (KeGFR)

80 patients AKI (AKIN criteria)

Concordance & Agreement between KeGFR and CG & MDRD

KeGFR

CG 62% 0.5(k)
MDRD 75% 0.7(k)

Concordance

Retrospective

Cockcroft-Gault (CG) and MDRD eGFR equation

eGFR according
drug dosing
categories
30 30-49 >50 ml/min

33%
Higher eGFR drug
dosing category
in KeGFR vs CG

Conclusions: In AKI, compared to CG, using KeGFR may affect drug dosing significantly by changing the eGFR category. Further studies of KeGFR for drug dosing will need therapeutic drug monitoringcand pharmacokinetic studies for validation.

Bairy M: Using Kinetic eGFR for Drug Dosing in AKI: Concordance between Kinetic eGFR, Cockroft-Gault Estimated Creatinine Clearance, and MDRD eGFR for Drug Dosing Categories in a Pilot Study Cohort. Nephron DOI: 10.1159/000507260

Visual Abstract by Aldo Rodrigo Jimenez Vega@aldorodrigo

Conclusions

- In AKI, compared to CGeCrCL, using KeGFR may affect drug dosing significantly by changing the eGFR category.
- Further studies of KeGFR for drug dosing will need therapeutic drug monitoring & pharmacokinetic studies for validation.

Bairy M. Nephron. 2020

Journal of Critical Care

Volume 75, June 2023, 154276

Diagnosing acute kidney injury ahead of time in critically ill septic patients using kinetic estimated glomerular filtration rate

Lada Lijović ^{a b} $\stackrel{\textstyle igstyle {igstyle {\Bbb M}}}{\textstyle igstyle {\Bbb M}}$, Stipe Pelajić ^b, Fatime Hawchar ^c, Ivaylo Minev ^d,

Beatriz Helena Cermaria Soares da Silva ^{e f}, Alessandra Angelucci ^g, Ari Ercole ^h,

Harm-Jan de Grooth ^a, Patrick Thoral ^a, Tomislav Radočaj ^b, Paul Elbers ^a

Methods

- Retrospective analysis on septic ICU patients who developed AKI.
- The reference standard for AKI was KDIGO classification.
- Prediction of AKI was based on stages defined by KeGFR & UO.
- Classifications were compared by:
 - Length of ICU stay (LOS)
 - Need for RRT
 - 28-day mortality.
- Predictive performance & time between prediction & diagnosis were calculated.

Lijovic L. J of Cri Care. 2023

Results

- Of 2492 patients in the cohort, 62.0% were diagnosed with AKI by KDIGO & 68.5% by KeGFR criteria.
- Disease stages had agreement of kappa = 0.77, with KeGFR sensitivity 93.2%, specificity 73.0% & accuracy 85.7%.
- Median time to recognition of AKI Stage 1 was 13.2 h faster for KeGFR, & 7.5 h & 5.0 h for Stages 2 & 3.
- Outcomes revealed a slight difference in LOS & 28-day mortality for Stage 1.

Lijovic L. J of Cri Care. 2023

Highlights

- Classical estimations of GFR are not reliable for patients with non-steady state Cr levels
- In non-steady state Cr levels, KeGFR offers time advantage to diagnosis
- Performance of KeGFR in patient recognition, staging & outcome prediction is similar to KDIGO
- KeGFR may shift the actionable window for preventing & mitigating renal insufficiency

Lijovic L. J of Cri Care. 2023

Shortened CrCl

COMMENTARY

Measuring glomerular filtration rate in acute kidney injury: Yes, but not yet

Bruce A Molitoris*

See related research by Pickering et al., http://ccforum.com/content/16/3/R107

Abstract

Acute kidney injury has become a major focus for nephrologists and critical care physicians. The development of structural biomarkers is proceeding, but the results to date have been disappointing. The use of a shortened creatinine clearance as a functional acute kidney injury biomarker is not new but has not been compared with that of other diagnostic approaches. A rapid, repeatable, and accurate measured glomerular filtration rate would be the gold standard for a functional biomarker and is not far off.

technique with clinical utility has not been developed. Reduction in the GFR, secondary to kidney injury, is the hallmark of AKI and results in increased levels of blood urea nitrogen (BUN) and serum creatinine. Unfortunately, the rates of increase in BUN and serum creatinine do not parallel the fall in GFR in a time frame that is clinically useful. In addition, since both creatinine production from muscle and GFR determine the serum creatinine level, using serum creatinine as an indicator of GFR is highly patient-specific and often problematic or even misleading. These issues have been described elsewhere [3].

Achieving the ability to rapidly and accurately measure

Shortened CrCl

- Rosenthal & colleagues used a 2-hour CrCl in stable patients & found an acceptable & repeatable correlation with the 24-hour CrCl.
- The accuracy & utility of a shortened collection in unstable patients were questioned by 2 studies conducted in patients with AKI.

Molitoris BA. Crit Care. 2012

Shortened CrCl

- ■This **limitation** may relate to:
 - Reduced production of Cr in sepsis
 - Increased production of Cr with trauma
 - Increased metabolism including the use of glucocorticoids
 - The changing of GFRs during the collection periods.
- Until such studies are conducted, confidence for using a CrCl may be limited.

Molitoris BA. Crit Care. 2012

4 hour CrCL for monitoring renal function in critically ill patients

- Pickering & colleagues set out to determine the clinical utility of a 4-hour (CrCl), compared with plasma Cr, for diagnosing AKI.
- CrCl increased the likelihood of diagnosing AKI; a decreasing CrCl correlated with increased kidney injury severity, death, or dialysis; & the CrCl was **most helpful** when patients began with a serum Cr in the normal range.
- The study was a **small pilot study**.

Pickering JW, et al. Crit Care 2012

Acute and Critical Care 2022 May 37(2):185-192 https://doi.org/10.4266/acc.2021.01256

Measured versus estimated creatinine clearance in critically ill patients with acute kidney injury: an observational study

Sara Kadivarian¹, Fatemeh Heydarpour², Hasanali Karimpour³, Foroud Shahbazi¹

¹Department of Clinical Pharmacy, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah; ²Social Development and Health Promotion Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah; ³Department of Anesthesia, School of Medicine, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran

Background: Acute kidney injury (AKI) commonly occurs in critically ill patients. Estimation of renal function and antibiotics dose adjustment in patients with AKI is a challenging issue. Methods: Urinary creatinine clearance was measured in a 6-hour urine collection from patients

Original Article

Measured versus eCrCl in critically ill patients with AKI: Methods

- Urinary CrCl was measured in a 6-hour urine collection from patients with AKI.
- The correlations between different formulas including the modified CG, MDRD, CKD-EPI, Jelliffe, kinetic GFR, Brater, & Chiou formulas were considered.
- The pattern of the prescribed antimicrobial agents was also compared with the patterns in the available resources.

Kadivarian S. ACC. 2022

Measured versus eCrCl in critically ill patients with AKI: Results

- Ninety-five patients with AKI
- Mean age : 63.11±17.58 ys old.
- The most patients (77.89%) were in stage 1 of AKI according to the AKIN criteria, followed by stage 2 (14.73%) & stage 3 (7.36).
- None of the formulations had a high or very high correlation with the measured CrCl.
- In stage 1, Chiou (r=0.26), & in stage 2 & 3, kinetic-GFR (r=0.76 & r=0.37) had the highest correlation coefficient.
- Antibiotic over- & under-dosing were frequently observed in the study.

Kadivarian S. ACC. 2022

Measured versus eCrCl in critically ill patients with AKI: Conclusions

- None of the static methods can predict the measured CrCl in the critically ill patients.
- The dynamic methods such as kinetic-GFR can be helpful for patients who do not receive diuretics & vasopressors.

Kadivarian S. ACC. 2022

Clin J Am Soc Nephrol. 2023 Aug; 18(8): 1080-1088.

Published online 2023 Feb 1. doi: 10.2215/CJN.000000000000101

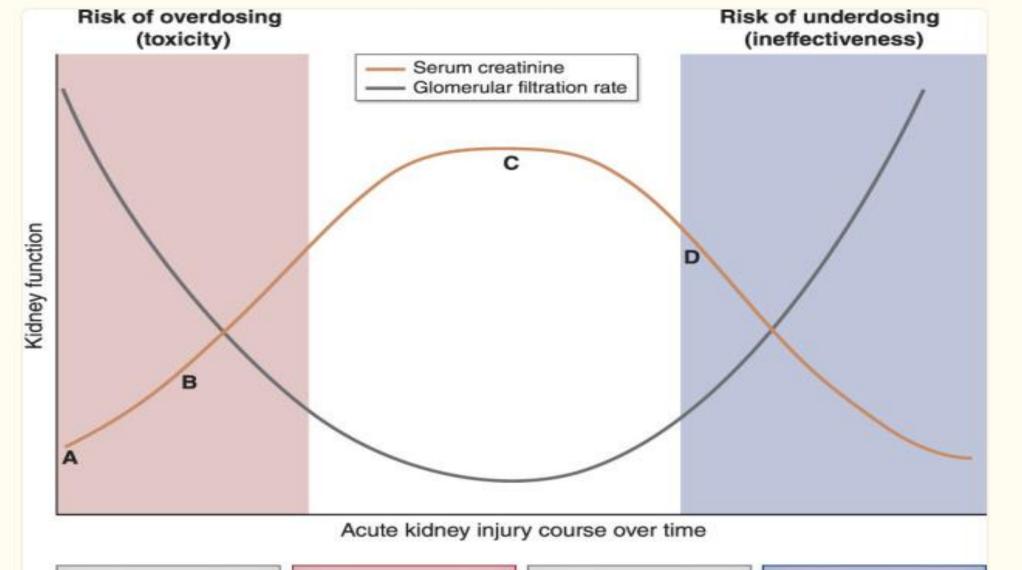
PMCID: PMC10564345

PMID: <u>36723347</u>

Medication Management in the Critically Ill Patient with Acute Kidney Injury

Michael L. Behal, 1, 2 Alexander H. Flannery, 1, 2 and Erin F. Barreto 3

► Author information ► Copyright and License information PMC Disclaimer


Abstract Go to: ▶

AKI occurs frequently in critically ill patients. Patients with AKI, including those who require KRT, experience multiple pharmacokinetic and pharmacodynamic perturbations that dynamically influence medication effectiveness and safety. Patients with AKI may experience both subtherapeutic drug concentrations, which lead to ineffective therapy, and supratherapeutic drug concentrations, which increase the risk for toxicity. In critically ill patients with AKI not requiring KRT, conventional GFR estimation equations, especially those based on serum creatinine, have

Journal Article

Impact of dynamic AKI course on medication dosing in the critically ill patients

A

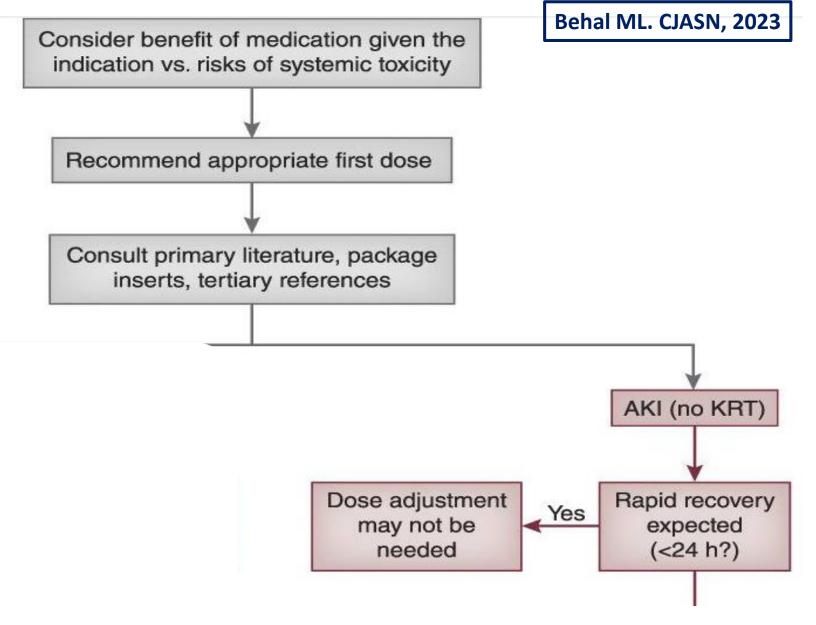
SCr 0.7 mg/dl eGFR 94 ml/min True GFR ~90 ml/min Assessment: Similar B

SCr 1.0 mg/dl eGFR 66 ml/min True GFR ~30 ml/min Assessment: Potential overdose, toxicity C

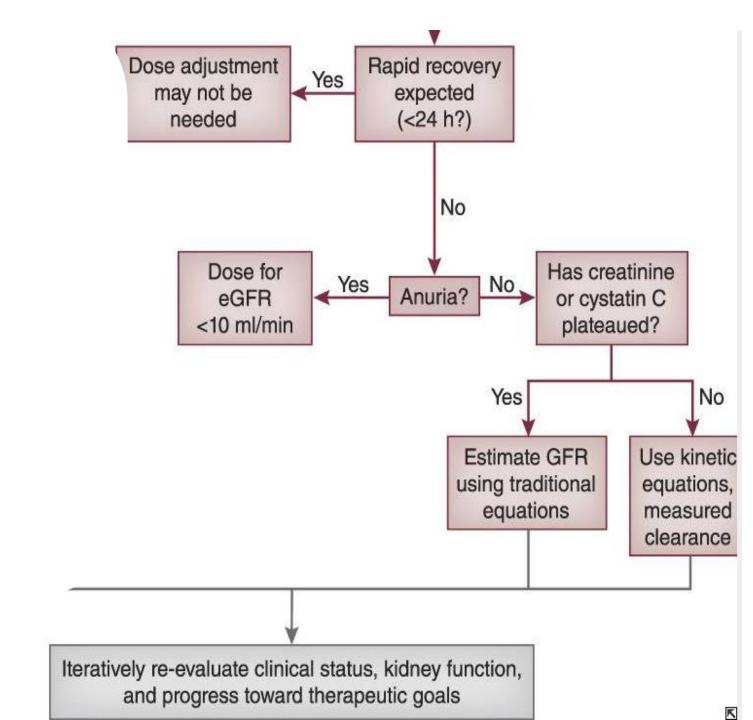
SCr 2.5 mg/dl eGFR 26 ml/min True GFR ~25 ml/min Assessment: Similar D

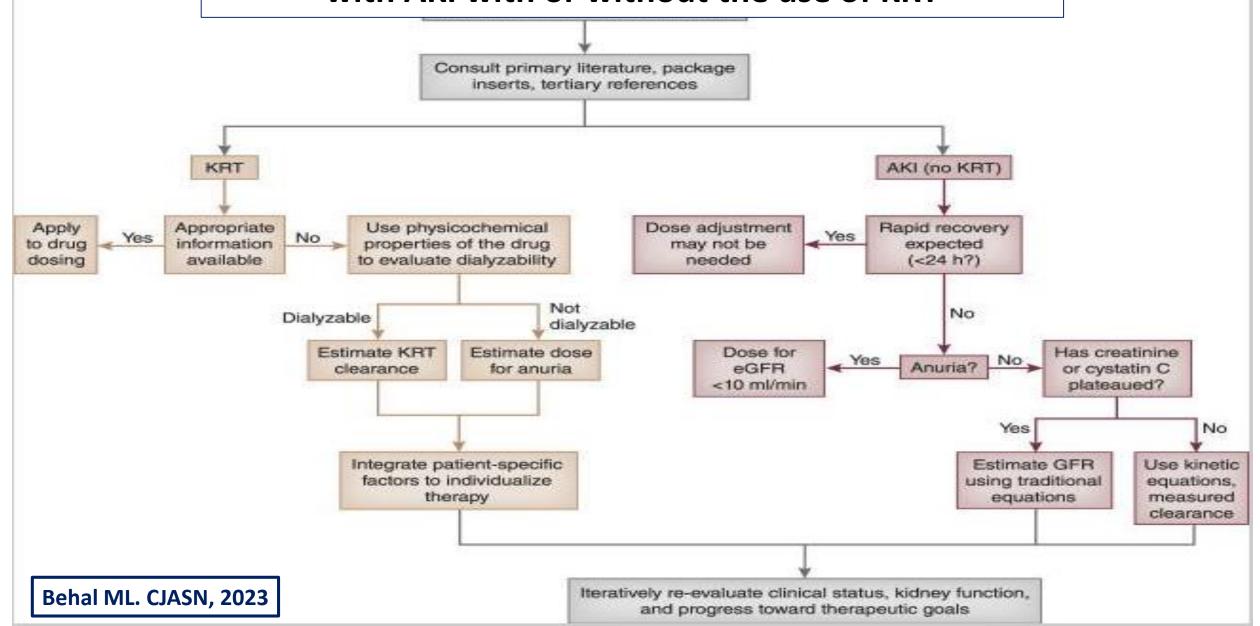
SCr 2.0 mg/dl eGFR 33 ml/min True GFR ~60 ml/min Assessment: Potential underdose, ineffective

Behal ML. CJASN, 2023


Medication Management in AKI

- Cr exhibits a 48–72 hours lag time...
- The so-called "creatinine-blind" period...


Approach to medication dosing in critically ill patients with AKI with or without the use of KRT



Approach to medication dosing in critically ill patients with AKI with or without the use of KRT

Behal ML. CJASN, 2023

Approach to medication dosing in critically ill patients with AKI with or without the use of KRT

Conclusion

Today, the direct measurement of GFR in AKI is performed in clinical research, not in routine practice, but in the future, if technically feasible, & if a therapeutic intervention becomes available, it may be required at the early infra-clinic phase.


Luque Y. NDT. 2020

